40 research outputs found

    2-D bed sediment transport modeling of a reach on the Sagavanirktok River, Alaska

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2019Conducting a 2-D sediment transport modeling study on the Sagavanirktok River has offered great insight to bed sediment movement. During the summer of 2017, sediment excavation of two parallel trenches began in the Sagavanirktok River, in an effort to raise the road elevation of the Dalton Highway to remediate against future floods. To predict the time in which the trenches refill with upstream sediment a 2-D numerical model was used. Three scenarios: (1) a normal cumulative volumetric flow, (2) a max discharge event, and (3) a max cumulative volumetric flow, were coupled with three sediment transport equations: Parker, Wilcock-Crowe and Meyer Peter and Müller for a total of 9 simulations. Results indicated that scenario (1) predicted the longest time to fill, ranging from 1-6 years followed by scenario (2), an even shorter time, and scenario (3) showing sustained high flows have the capability to nearly refill the trenches in one year. Because the nature of this research is predictive, limitations exist as a function of assumptions made and the numerical model. Therefore, caution should be taken in analyzing the results. However, it is important to note that this is the first time estimates have been calculated for an extraction site to be refilled on the Sagavanirktok River. Such a model could be transformed into a tool to project filling of future material sites. Ultimately, this could expedite the permitting process, eliminating the need to move to a new site by returning to a site that has been refilled from upstream sediment

    Hydrological, Sedimentological, and Meteorological Observations and Analysis on the Sagavanirktok River

    Get PDF
    The Dalton Highway near Deadhorse was closed twice during late March and early April 2015 because of extensive overflow from the Sagavanirktok River that flowed over the highway. That spring, researchers from the Water and Environmental Research Center at the University of Alaska Fairbanks (UAF) monitored the river conditions during breakup, which was characterized by unprecedented flooding that overtopped and consequently destroyed several sections of the Dalton Highway near Deadhorse. The UAF research team has monitored breakup conditions at the Sagavanirktok River since that time. Given the magnitude of the 2015 flooding, the Alyeska Pipeline Service Company started a long-term monitoring program within the river basin. In addition, the Alaska Department of Transportation and Public Facilities (ADOT&PF) funded a multiyear project related to sediment transport conditions along the Sagavanirktok River. The general objectives of these projects include determining ice elevations, identifying possible water sources, establishing surface hydro-meteorological conditions prior to breakup, measuring hydro-sedimentological conditions during breakup and summer, and reviewing historical imagery of the aufeis extent. In the present report, we focus on new data and analyze it in the context of previous data. We calculated and compared ice thickness near Franklin Bluffs for 2015, 2016, and 2017, and found that, in general, ice thickness during both 2015 and 2016 was greater than in 2017 across most of the study area. Results from a stable isotope analysis indicate that winter overflow, which forms the aufeis in the river area near Franklin Bluffs, has similar isotopic characteristics to water flowing from mountain springs. End-of-winter snow surveys (in 2016/2017) within the watershed indicate that the average snow water equivalent was similar to what we observed in winter 2015/2016. Air temperatures in May 2017 were low on the Alaska North Slope, which caused a long and gradual breakup, with peak flows occurring in early June, compared with mid-May in both 2015 and 2016. Maximum discharge measured at the East Bank station, near Franklin Bluffs was 750 m3/s (26,485 ft3/s) on May 30, 2017, while the maximum measured flow was 1560 m3/s (55,090 ft3/s) at the same station on May 20, 2015. Available cumulative rainfall data indicate that 2016 was wetter than 2017. ii In September 2015, seven dry and wet pits were dug near the hydro-sedimentological monitoring stations along the Sagavanirktok River study reach. The average grain-size of the sediment of exposed gravel bars at sites located upstream of the Ivishak-Sagavanirktok confluence show relatively constant values. Grain size becomes finer downstream of the confluence. We conducted monthly topo-bathymetric surveys during the summer months of 2016 and 2017 in each pit. Sediment deposition and erosion was observed in each of the pits. Calculated sedimentation volumes in each pit show the influence of the Ivishak River in the bed sedimenttransport capacity of the Sagavanirktok River. In addition, comparison between dry and wet pit sedimentation volumes in some of the stations proves the complexity of a braided river, which is characterized by frequent channel shifting A two-dimensional hydraulic model is being implemented for a material site. The model will be used to estimate the required sediment refill time based on different river conditions.ABSTRACT ..................................................................................................................................... i LIST OF FIGURES ......................................................................................................................... i LIST OF TABLES ....................................................................................................................... xiv ACKNOWLEDGMENTS AND DISCLAIMER ........................................................................ xvi CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND HORIZONTAL DATUM, ABBREVIATIONS, AND SYMBOLS .......................................... xvii ABBREVIATIONS, ACRONYMS, AND SYMBOLS .............................................................. xix 1 INTRODUCTION ................................................................................................................... 1 2 STUDY AREA ........................................................................................................................ 2 2.1 Sagavanirktok River near MP318 Site 066 (DSS4) ......................................................... 7 2.2 Sagavanirktok River at Happy Valley Site 005 (DSS3) .................................................. 7 2.3 Sagavanirktok River below the Confluence with the Ivishak River (DSS2) ................... 9 2.4 Sagavanirktok River near MP405 Site 042 (DSS1) ....................................................... 10 3 METHODOLOGY AND EQUIPMENT .............................................................................. 13 3.1 Pits .................................................................................................................................. 13 3.1.1 Excavation............................................................................................................... 13 3.1.2 Surveying ................................................................................................................ 14 3.2 Surface Meteorology ...................................................................................................... 15 3.3 Aufeis Extent .................................................................................................................. 17 3.3.1 Field Methods ......................................................................................................... 18 3.3.2 Imagery ................................................................................................................... 18 3.4 Water Level Measurements ............................................................................................ 19 3.5 Runoff............................................................................................................................. 20 3.6 Suspended Sediment ...................................................................................................... 21 3.7 Turbidity ......................................................................................................................... 22 3.8 Stable Isotopes................................................................................................................ 22 4 RESULTS .............................................................................................................................. 23 4.1 Meteorology ................................................................................................................... 23 4.1.1 Air Temperature ...................................................................................................... 23 4.1.2 Precipitation ............................................................................................................ 31 4.1.2.1 Cold Season Precipitation ................................................................................ 31 4.1.2.2 Warm Season Precipitation ............................................................................. 36 4.1.3 Wind Speed and Direction ...................................................................................... 39 iv 4.2 Aufeis Extent .................................................................................................................. 40 4.2.1 Historical Aufeis at Franklin Bluffs ........................................................................ 41 4.2.2 Delineating Ice Surface Elevation with GPS and Aerial Imagery .......................... 45 4.3 Surface Water Hydrology ............................................................................................... 52 4.3.1 Sagavanirktok River at MP318 (DSS4) .................................................................. 58 4.3.2 Sagavanirktok River at Happy Valley (DSS3) ....................................................... 61 4.3.3 Sagavanirktok River near MP347 (ASS1) .............................................................. 65 4.3.4 Sagavanirktok River below the Ivishak River (DSS2) ........................................... 66 4.3.5 Sagavanirktok River at East Bank (DSS5) near Franklin Bluffs ............................ 70 4.3.6 Sagavanirktok River at MP405 (DSS1) West Channel .......................................... 78 4.3.7 Additional Field Observations ................................................................................ 82 4.3.8 Preliminary Rating Curves and Estimated Discharge ............................................. 85 4.4 Stable Isotopes................................................................................................................ 86 4.5 Sediment Grain Size Distribution .................................................................................. 90 4.5.1 Streambed Sediment Grain Size Distribution ......................................................... 90 4.5.2 Suspended Sediment Grain Size Distribution ......................................................... 94 4.6 Suspended Sediment Concentration ............................................................................... 95 4.6.1 Sagavanirktok River near MP318 (DSS4) .............................................................. 95 4.6.2 Sagavanirktok River at Happy Valley (DSS3) ..................................................... 100 4.6.3 Sagavanirktok River below the Ivishak River (DSS2) ......................................... 105 4.6.4 Sagavanirktok River near MP405 (DSS1) ............................................................ 111 4.6.5 Discussion ............................................................................................................. 114 4.7 Turbidity ....................................................................................................................... 116 4.7.1 Sagavanirktok River near MP318 (DSS4) ............................................................ 116 4.7.2 Sagavanirktok River at Happy Valley (DSS3) ..................................................... 119 4.7.3 Sagavanirktok River below the Ivishak (DSS2) ................................................... 124 4.7.4 Sagavanirktok River near MP405 (DSS1) ............................................................ 126 4.7.5 Discussion ............................................................................................................. 130 4.8 Analysis of Pits............................................................................................................. 130 4.8.1 Photographs of Pits ............................................................................................... 130 4.8.2 GIS Analysis of Pit Bathymetry ........................................................................... 141 4.8.3 Pit Sedimentation .................................................................................................. 142 4.8.4 Erosion Surveys .................................................................................................... 149 4.8.5 Patterns of Sediment Transport Along the River .................................................. 156 v 4.9 Hydraulic Modeling ..................................................................................................... 158 4.9.1 Model Development .............................................................................................. 160 4.9.2 Results of Simulation ............................................................................................ 165 5 CONCLUSIONS ................................................................................................................. 171 6 REFERENCES .................................................................................................................... 174 7 APPENDICES ..................................................................................................................... 18

    Imaging individual solute atoms at crystalline imperfections in metals

    Get PDF
    Directly imaging all atoms constituting a material and, maybe more importantly, crystalline defects that dictate materials\u27 properties, remains a formidable challenge. Here, we propose a new approach to chemistry-sensitive field-ion microscopy (FIM) combining FIM with time-of-flight mass-spectrometry (tof-ms). Elemental identification and correlation to FIM images enabled by data mining of combined tof-ms delivers a truly analytical-FIM (A-FIM). Contrast variations due to different chemistries is also interpreted from density-functional theory (DFT). A-FIM has true atomic resolution and we demonstrate how the technique can reveal the presence of individual solute atoms at specific positions in the microstructure. The performance of this new technique is showcased in revealing individual Re atoms at crystalline defects formed in Ni–Re binary alloy during creep deformation. The atomistic details offered by A-FIM allowed us to directly compare our results with simulations, and to tackle a long-standing question of how Re extends lifetime of Ni-based superalloys in service at high-temperature

    Shared Metadata for Data-Centric Materials Science

    Get PDF
    The expansive production of data in materials science, their widespread sharing and repurposing requires educated support and stewardship. In order to ensure that this need helps rather than hinders scientific work, the implementation of the FAIR-data principles (Findable, Accessible, Interoperable, and Reusable) must not be too narrow. Besides, the wider materials-science community ought to agree on the strategies to tackle the challenges that are specific to its data, both from computations and experiments. In this paper, we present the result of the discussions held at the workshop on "Shared Metadata and Data Formats for Big-Data Driven Materials Science". We start from an operative definition of metadata, and what features a FAIR-compliant metadata schema should have. We will mainly focus on computational materials-science data and propose a constructive approach for the FAIRification of the (meta)data related to ground-state and excited-states calculations, potential-energy sampling, and generalized workflows. Finally, challenges with the FAIRification of experimental (meta)data and materials-science ontologies are presented together with an outlook of how to meet them

    Ab-initio study of C and N point defects in the C14-Fe2Nb phase

    No full text
    Nb-alloying of steels can lead to the formation of topologically close-packed (TCP) phases, particularly Fe2Nb Laves and Fe7Nb6μ phases. The stability of these TCP phases is strongly affected by the presence of light elements like C and N. We calculate the solution energy of C and N in C14-Fe2Nb using density functional theory. N shows a strong preference to dissolve in larger interstitial voids while C shows a strong tendency to bind with a neighbouring Nb atom. The computed solution energies suggest N incorporation into Fe2Nb Laves phases while C is hardly soluble. The N-N interaction in Fe2Nb is strongly attractive and twice as strong as that of C-C. A comparison to C interstitials in the μ-Fe7Nb6phase shows similar dependence of the solution energy on the atomic environment. In order to aid future work, we additionally provide the coordinates of interstitial sites in all TCP phases (A15, Zr4Al3, C14, C15, C36, χ, μ, σ, M, P, δ and R.) in the supplementary material. © 2016 Elsevier B.V
    corecore